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Abstract. We calculate the amplitudes of JPC = 3−− meson production in diffractive DIS within the
kt-factorization approach, with particular attention paid to the ρ3(1690) meson. We find that at all Q2 the
ρ3(1690) production cross section is 2–5 times smaller than the ρ(1700) production cross section, which is
assumed to be a pure D-wave state. Studying σL and σT separately, we observe domination of ρ3 in σL

and domination of ρ(1700) in σT and offer an explanation of this behavior in simple terms. We also find
very strong contributions – sometimes even domination – of the s-channel helicity violating amplitudes.
The typical color dipole sizes probed in ρ3 production are shown to be larger than those in the ground
state ρ production, and the energy dependence of ρ3 cross section turns out to be much flatter than the
ρ production cross section. All the conclusions about the relative behavior of the ρ3(1690) and ρ(1700)
mesons are numerically stable against variations of the input parameters.

1 Introduction

Diffractive production of vector mesons (VM) in DIS γ∗p →
V p (V = ρ, φ, J/ψ etc.) is a very active field of research (see
the recent review in [1] and references therein). Studying the
Q2-behavior of the VM production cross sections, one can
learn about the transition from soft to hard regimes in the
strong interactions, while their energy dependence reveals
the Regge properties of the pomeron exchange. The rich
set of possible helicity amplitudes γ(λγ) → V (λV ) allows
one to study the spin properties of the reaction and to test
the s-channel helicity conservation (SCHC).

The main focus of this research has been on the pro-
duction of the ground state mesons, while diffractive pro-
duction of excited states did not enjoy much attention.
Perhaps, the case studied most so far was the production
of radially excited mesons V (2S). The remarkable conse-
quences of the presence of a node in the radial wave function
described in [2] were nicely confirmed by H1 measurements
of diffractively produced ψ(2S) [3].

Similar experimental studies of excited ρ mesons are
expected to be even more rewarding. First, diffractive pro-
duction of excited ρmesons probes the dipole cross section
at larger dipole sizes than the production of ground states.
For example, in the analysis of [4] dipole sizes up to 2 fm
were important. Such a unique sensitivity of these reactions
to soft diffraction can help to understand the phenomenon
of saturation, which is now a hot topic of debates (see [5]
and references therein). Another handle offered by diffrac-
tive production of ρ′ is their possible help in resolving the
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long standing puzzle of the radial/orbital excitation as-
signment, as well as a possibility of a hybrid component in
the ρ(1450) and ρ(1700) mesons [6].

Diffractive production of excited ρ′ mesons has been
observed for a long time in a number of fixed target exper-
iments with relatively high energies. Diffractive production
of ρ′(1600) was reported in the π+π− [7] and 4π [8] final
states (for reanalysis of these data in terms of ρ(1450) and
ρ(1700) mesons and for references to earlier experiments
at lower energies, see [9]). These states were also studied
in the recent Fermilab experiment E687 [10] both in the
2π and 4π channels. Finally, the OMEGA Collaboration
has succeeded to measure diffractive photoproduction cross
section of the ρ3(1690) (known then as the g(1690) meson)
via the a2(1320)π → ηπ+π− diffractive final state [11].
However, all these experiments gave only the value of the
photoproduction cross section, and no energy dependence,
Q2 dependence, or helicity structure of the reaction was
studied. This gap was partially closed by the H1 measure-
ments of theρ′ electroproduction at 4 < Q2 < 50 GeV2 [12],
but due to low statistics the results presented had large
error bars.

Diffractive production of excited states has not received
too much attention also from theory. Early theoretical dis-
cussions were limited to vector dominance models and its
off–forward upgraded versions [9]. The pQCD based calcu-
lations of diffractive production of the ground state vector
mesons were developed in the mid-90’s and were almost im-
mediately extended to the case of radial excitations, since
the principal effect there is the presence of the node in
the radial wave function [2]. However, for a long time no
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microscopic calculation of the orbitally excitated vector
mesons was available.

The situationwas aggravated by the understanding that
production ofD-wave vector mesons (as well as JPC = 3−−
mesons) should be suppressed by Fermi motion, as its radial
wave function vanishes at the origin. This suppression was
believed to be sufficiently strong and even prompted the
authors of [4] to consider diffractive ρ(1450) and ρ(1700)
production neglecting in both cases the D-wave contribu-
tions altogether. Only in [13] were the S-wave and D-wave
vector meson production amplitudes calculated within the
kt-factorization approach, however at that time the ab-
sence of convenient parameterizations of the unintegrated
gluon density – the key input quantity – impeded numer-
ical predictions.

During the last years, several fits to the unintegrated
gluon density appeared [14, 15]. This allowed for the first
estimates [16] of the purely D-wave VM production cross
sections, which showed that at small to moderate Q2 the
production rates of theD-wave and 2S ρ′ states are roughly
comparable. This was not surprising, since a similar con-
clusion was drawn in [9] during the famous splitting of
the ρ′(1600) into ρ(1450) and ρ(1700). For a more de-
tailed analysis of the D-wave vector meson production in
kt-factorization, see [17].

The approach developed in [13] can be applied also to
the diffractive production of spin-3 mesons. The D-wave
vector meson and the spin-3 meson can be viewed as spin–
orbital splitting partners and can be described within the
same formalism. The only modification required to proceed
from the D-wave VM to the spin-3 meson is that of the qq̄
coupling to the final meson:

ūDµ u · V ∗
µ → ū Cµνρ u · T ∗

µνρ, (1)

where Vµ and Tµνρ are the polarization vector for the spin-
1 and the polarization tensor for the spin-3 mesons, re-
spectively. The spinorial structure Dµ determined in [13]
corresponds to the pure D-wave vector meson, while the
structure Cµνρ to be found should correspond to theD-wave
spin-3 meson.

In this paper we report the first microscopic deriva-
tion of the JPC = 3−− production amplitudes within the
kt-factorization approach. We focus on the ρ3(1690) pro-
duction and give predictions on the Q2 and W dependence
of the cross sections, on the σL/σT decomposition, and on
the role of s-channel helicity violating amplitudes. We also
compare the ρ3(1690) cross sections with those of ρ(1700),
which is assumed to be a purely D-wave vector meson,
and observe a number of remarkable distinctions. These
should prove useful in disentangling these two mesons in
experiment, especially in the case of low statistics.

This paper is organized as follows. In Sect. 2 we show
how spin-3 mesons are described and present analytic ex-
pressions of the spin-3 meson production amplitudes. In
Sect. 3 we perform a twist analysis of the amplitudes in the
forward case, compare the results with those ofD-wave vec-
tor mesons, and discuss the effects of the s-channel helicity
violating amplitudes, which will appear in the non-forward
scattering. In Sect. 4 we present numerical results for ρ3 and

compare them with the corresponding ground state ρ and
ρ(1700) cross sections. In Sect. 5 we discuss the typical color
dipole sizes probed in ρ3 production, compare our results
with experimental data available and comment on future
possibilities. Finally, in Sect. 6 we draw our conclusions.

2 Amplitudes of spin-3 meson production

2.1 Kinematics and notation

We use the usual notation for the kinematical variables.
Q2 is the photon’s virtuality, W is the total center-of-mass
energy of the γ∗p collision. The momentum transfer from
proton to photon is denoted by ∆µ and at high energies
is almost purely transverse: −∆2 = |t| ≈ |t′| = ∆2. The
transverse vectors (orthogonal to the γ∗p collision axis)
will be always labelled by an arrow.

The diffractive production of meson V with mass mV

can be treated in the lowest Fock state approximation as
the production of the corresponding qq̄ pair of invariant
mass M �= mV , which is then projected, at the amplitude
level, onto the final state. Within the leading log 1

x accuracy
the higher Fock states are reabsorbed into the evolution
of the unintegrated gluon density (or color dipole cross
section). A typical diagram to be calculated [1] contains
the valence quark loop, with integration over the quark
transverse momentum k and its fraction of photon’s light-
cone momentum z, and the uppermost gluon loop, with
the integration over transverse momentum κ. A convenient
choice is to assign the momentum k + z∆ to the quark
and −k + (1 − z)∆ to the antiquark, which ensures that
even at non-zero ∆ the qq̄ invariant mass is M2 = m2+k2

z(1−z) .
It is also convenient to consider the relative qq̄ momentum
pµ ≡ (kq − kq̄)µ/2 in the qq̄ pair rest frame, where it re-
duces to the 3-momentum p = (k, kz) with kz ≡ 2z−1

2 M .
Such 3-dimensional vectors, which always refer to the qq̄
rest frame, will be given in bold.

Finally, throughout the text the ground state vector
mesons (which will be always understood as 1S states)
will be generically labelled by V or V1S ; the pure D-wave
vector mesons will be labelled by VD, while the JPC = 3−−
states of the same quarkonium will be marked as V3. When
we speak ofD-wave mesons, we will always assumeD-wave
vector mesons, not spin-3 mesons (although in V3 the qq̄
pair also sits in the D-wave). In order to avoid excessive
subscripts, mV will refer to the mass of the meson being
discussed. In particular, for the ρ system we will speak
of ρ3 and ρD. The former refers to the physical ρ3(1690)
state, while the identification of the latter with ρ(1700) is
clearly model dependent and is done only for purposes of
comparison. The effects of S-wave admixture in ρ(1700)
are considered in [17].

2.2 Description of a spin-3 meson

A spin-3 particle is described with the rank-3 polarization
tensor Tµνρ, which must be symmetric and traceless in
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any pair of Lorentz indices. States with any given helicity
can be written as simple combinations of the well-known
polarization vectors eµ

λ, λ = +1, 0, −1 (see below more
on eµ

0 ):

Tµνρ
+3 = eµ

+e
ν
+e

ρ
+, Tµνρ

+2 =
1√
3

{eµ
+e

ν
+e

ρ
0},

Tµνρ
+1 =

1√
15

(
2{eµ

+e
ν
0e

ρ
0} + {eµ

+e
ν
+e

ρ
−})

,

Tµνρ
0 =

1√
10

(
2eµ

0e
ν
0e

ρ
0 + {eµ

+e
ν
0e

ρ
−})

, (2)

where curly brackets denote symmetrization.
To construct the spinorial structure Cµνρ, recall first

that both quark and antiquark spinors can be treated on-
mass shell (see details in [16]). Therefore, Cµνρ can be
contructed from two independent structures: γµpνpρ and
pµpνpρ (symmetrization over indices is assumed). When
constructing Cµνρ, we should make sure that it represents
a purely L = 2 state without admixture of L = 4 wave,
which is in complete analogy with the construction of S-
and D-wave vector mesons performed in [13]. Note that
we explicitly rely on the lowest Fock state approximation
of the meson; if higher Fock states are taken into account,
such a simple picture is lost.

Cµνρ in (1) can be constructed in a most transparent way
in the non-relativistic case. Instead of the D-wave vector
meson structure ϕ†Dijσj ϕ, where Dij ≡ 3pipj − δijp2,
we have now ϕ†Dijσk ϕ. Recall that this structure will
be contracted with the polarization tensor T ijk so that
one should not worry about symmetrization. Since this
polarization tensor is traceless, the coupling simplifies to
ϕ† σk ϕpipj , which is just a tensor product of the S-wave
coupling for vector meson and the pipj term. We do not
have to keep track of the overall normalization factors,
since they can always be absorbed in the definition of the
radial wave function.

Returning to the fully relativistic case, we can now write
the spinorial structure for spin-3 meson coupling:

ū Cµνρ u · Tµνρ = ūSµpνpρ u · Tµνρ ≡ ūSµ u · τµ,
τµ ≡ Tµνρp

νpρ. (3)

As the last form of this coupling shows, the spin-3 ampli-
tudes are easy to construct once we know the amplitudes
for the S-wave vector meson.

Given the spinorial structure, one can now calculate
various amplitudes with the spin-3 meson. In such calcu-
lations, the radial wave function ψ(p2) will appear, whose
normalization is

1 =
Nc

(2π)3

∫
d3p 4M |ψ3(p2)|2 · (−τµτ∗

µ

)

=
Nc

(2π)3
2
15

∫
d3p 4Mp4|ψ3(p2)|2. (4)

Apart from the coefficient 1/15, this normalization condi-
tion coincides with the D-wave vector meson normaliza-
tion condition.

We underline that our approach to describing the po-
larization states of the final meson is explicitly rotationally
invariant. We use identical radial wave functions for all the
polarization states of the final meson, and in this way the
normalization condition (4) holds for an arbitrary polar-
ization state of the spin-3 meson. An important part of the
rotation-invariant description is that the transversity con-
dition must be imposed at the level of the qq̄ pair. This leads
to the concept of the running longitudinal polarization vec-
tor eµ

0 (M), such that it is orthogonal to the 4-momentum
of the on-mass shell qq̄ pair with invariant mass M , rather
than the momentum of the final meson. The calculations
with the fixed longitudinal polarization vector often found
in the literature break the rotation invariance. In technical
terms, the fixed polarization vector leads to a mixing of
the longitudinal spin-1 state and spin-0 states.

Potential models suggest that the radial wave functions
of the spin–orbital partners should be very similar. One
can assume, as a starting approximation, that their shapes
are identical. This assumption leads to

ψ3(p2) =
√

15ψD(p2), (5)

which will be useful for comparison of spin-3 and D-wave
vector meson production.

2.3 Generic amplitudes

A generic form of the helicity amplitudes γ∗(λγ)→V3(λ3) is

ImAλ3;λγ
= W 2 cV

√
4παem

4π2

∫
dzd2k

z(1 − z)

∫
d2κ

κ4 (6)

×αs F(x1, x2,κ,∆) · I(3)
λ3;λγ

· ψ3(p2).

Here cV is the flavor dependent average charge of the
quark, the argument of the strong coupling constant αs
is max[z(1 − z)(Q2 +M2),κ2], and F(x1, x2,κ,∆) is the
skewed unintegrated gluon distribution, with x1 �= x2 be-
ing the fractions of the proton’s momentum carried by the
uppermost gluons. The appearance of skewed (or gener-
alized) parton distributions is characteristic for scattering
processes that change the mass/virtuality of the projec-
tile [18]; see also recent reviews [19]. In the case of me-
son production, its use is important due to x2 � x1 and
has been incorporated in the collinear factorization ap-
proach [18,20] as well as in the factorization approach with
non-zero transverse momenta of the quarks taken into ac-
count [21]. In the kt-factorization approach, the skewness
is transferred to the unintegrated distributions.

The integrands for the spin-3 mesons I(3)
λ3;λγ

can be
written in terms of the corresponding integrands for vec-
tor mesons:

I
(3)
+3;λγ

= I+;λγ
(k∗

+)2, (7)

I
(3)
+2;λγ

=
1√
3

(
2I+;λγkzk

∗
+ + I0;λγ (k∗

+)2
)
, (8)

I
(3)
+1;λγ

=
1√
15

[
(2k2

z − k2)I+;λγ + 4kzk
∗
+I0;λγ



508 F. Caporale, I.P. Ivanov: Production of spin-3 mesons in diffractive DIS

+(k∗
+)2I−;λγ

]
, (9)

I
(3)
0;λγ

=
1√
10

[
(2k2

z − k2)I0;λγ
+ 2kzk

∗
−I+;λγ

+ 2kzk
∗
+I−;λγ

]
, (10)

where we used shorthand notation

k± ≡ −(pµe
µ
±) = p · e± = −k∗

∓,

kz ≡ −(pµe
µ
L) = p · e0. (11)

Note that both pµ and eµ
λ depend on∆; still this dependence

of their scalar product vanishes due to Lorentz invariance.
The integrands Iλi;λγ

are

I0;0 = 4QMz2(1 − z)2
[
1 +

(2z − 1)2

4z(1 − z)
2m

M + 2m

]
Φ2,

(12)

I+;+ = m2Φ2 + [z2 + (1 − z)2]Φ1+k
∗
+

+
m

M + 2m
[
k2Φ2 − (2z − 1)2Φ1+k

∗
+
]
, (13)

I−;+ = 4z(1 − z)
[
1 +

(2z − 1)2

4z(1 − z)
2m

M + 2m

]
k+Φ1+

− 2m
M + 2m

k2
+Φ2, (14)

I0;+ = −4z(1 − z)
[
1 +

(2z − 1)2

4z(1 − z)
2m

M + 2m

]
kzΦ1+

+
2m

M + 2m
kzk+Φ2, (15)

I+;0 = −4z(1 − z)
Q

M
kzk

∗
+

M

M + 2m
Φ2. (16)

The integrands for helicity −1 can be obtained from those
with +1 by replacement of k+ → k− and Φ1+ → Φ1− (with
no extra minus sign that would appear only at the level of
amplitudes!). Here the function Φ2 describes the transition
of a virtual photon into the qq̄ states with λq + λq̄ = λγ∗ ,
whereas Φ1 describes the transition of transverse photons
into the qq̄ states with λq + λq̄ = 0, in which the helicity
of the photon is carried by the orbital angular momentum
in the qq̄ state:

Φ2 = − 1

(r + κ)2 +Q
2 − 1

(r − κ)2 +Q
2

+
1

(r + ∆/2)2 +Q
2 +

1

(r − ∆/2)2 +Q
2 ,

Φ1 = − r + κ

(r + κ)2 +Q
2 − r − κ

(r − κ)2 +Q
2

+
r + ∆/2

(r + ∆/2)2 +Q
2 +

r − ∆/2

(r − ∆/2)2 +Q
2 ,

where r ≡ k + (2z − 1)∆/2 and Q
2 ≡ z(1 − z)Q2 +m2.

3 Large Q2, m2
V analysis

The above expressions can be integrated numerically. How-
ever, before describing these results it is useful to study
analytically the case where both Q2 and m2

V are much
larger than any soft scale, while Q2/m2

V can be arbitrary.
In this approximation one expands thehard scaleQ

2
around

Q
2
0 ≡ 1

4 (Q2+m2
V ), and also performs an expansion in pow-

ers of a small Fermi motion of the qq̄ pair, k2
z ,k

2 � m2
V . We

will call this approximation the “twist” expansion. We start
with the forward case, ∆ = 0, where only the s-channel
helicity conserving amplitudes with λ3 = λγ survive, and
find the ratio σL/σT as well as the relation between the V3
and VD production cross sections. After this, we discuss
the role of the helicity violating amplitudes.

3.1 Twist expansion for the forward case

We consider the two non-zero integrands in this approx-
imation, (9) and (10), and note that after dΩp angular
averaging all terms in each of these expressions give com-
parable contributions, ∝ p4κ2/Q

4
0, differing only by nu-

merical coefficients:

I
(3)
+;+ =

κ2

Q
4
0

p4
[

3
15

(
1 +

8
3

M2

Q2 +M2

)
− 6

15
+

3
15

]

=
κ2

Q
4
0

· 8
15

p4 M2

Q2 +M2 ,

I
(3)
0;0 =

Q

M
· κ2

Q
4
0

p4
[

2
15

(
1 +

4M2

Q2 +M2

)
+

2
15

]

=
Q

M
· κ2

Q
4
0

· 4
15

p4
(

1 +
2M2

Q2 +M2

)
.

It is curious to note that the leading-twist contribution in
the transverse amplitudes vanishes, and one is left with
the subleading term. This cancellation does not occur in
the longitudinal amplitude, which leads to an abnormally
large value of the ratio σL/σT:

RLT ≡ σL

σT
· m

2
V

Q2 =
27
8

(
1 +

Q2

3m2
V

)2

� 1. (17)

This must be confronted with RLT = 1 for the ground
state mesons and, even more remarkably, with RLT � 1
for D-wave vector mesons, evaluated within the same ap-
proximation.

We stress that such a peculiar Q2 dependence of the
ratio σL/σT (17) is entirely due to the heavy-meson ap-
proximation we used. Allowing for the longitudinal quark
motion will restore the leading-twist contribution to the
transverse amplitude. What is expected to remain, how-
ever, is the overall smallness of the transverse amplitude
and, therefore, a large numerical value of RLT.
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3.2 Spin-3 versus D-wave vector meson

Within the twist expansion, the VD and V3 production
amplitudes are proportional to

∫
d3pp4ψD(p2) and∫

d3pp4ψ3(p2), respectively. Assuming (5), one can relate
the VD and V3 production cross sections. The results for the
longitudinal and transverse cross sections, separately, are

σ
(3)
L

σ
(1)
L

= 24


 1 + 2m2

V

Q2+m2
V

1 − 8m2
V

Q2+m2
V




2

� 1,

σ
(3)
T

σ
(1)
T

= 4


 1

1 + 15
4

Q2+m2
V

m2
V




2

� 1, (18)

where we assumed the masses of the two states to be equal.
One sees that the longitudinal cross section is dominated
by the V3 meson, while the transverse one is dominated by
VD. In some sense, these two mesons “mirror” each other:
where V3 is suppressed, VD dominates and vice versa.

This “mirror” behavior can in fact be understood in
simple terms. Consider, for instance, the T → T transition.
Note first that although the integrands forVD derived in [13]
look very differently from those of V3; they can be written
in a form similar to (1): ūDµu ·Vµ ≡ ūSµu ·Dµρ ·Vρ, where

Dµρ · V ρ
+ = − 1

2
[
(2k2

z − k2)eµ
+ − 6kzk+e

µ
0 + 6(k+)2eµ

−
]
.

This should be compared with

τµ
+1 =

1√
15

[
(2k2

z − k2)eµ
+ + 4kzk+e

µ
0 + (k+)2eµ

−
]
.

The corresponding integrands I(3)
+;+ and I(1)

+;+ are

I
(3)
+;+ =

1√
15

[
(2k2

z − k2)I+;+ + 4kzk
∗
+I0;+ + (k∗

+)2I−;+
]
;

I
(1)
+;+ = − 1

2
[
(2k2

z − k2)I+;+ − 6kzk
∗
+I0;+ + 6(k∗

+)2I−;+
]
.

(19)

The key point is the opposite signs in front of the sec-
ond term. It turns out that the contributions of all three
terms in I

(1)
+;+ are of the same sign and of the same order

of magnitude, so that they interfere constructively in VD

production. In the case of V3, they interfere destructively,
which leads to a suppressed σ(3)

T .
For the longitudinal amplitude, the similar change of

signs strongly suppresses the result for D-wave mesons,
enhancing it in the spin-3 case. We see that there are good
reasons to expect such a “mirror” behavior of V3 and VD

just on the basis of their spin–angular composition.

3.3 The role of s-channel helicity violation

The approximate conservation of the s-channel helicity in
diffractive reactions is due to two reasons. First, in diffrac-
tion the helicity properties of the target and projectile are

uncorrelated, and in the forward case strict SCHC holds
separately for the projectile and the target. At ∆ �= 0
the s-channel helicity non-conserving (SCHNC)amplitudes
depend on the momentum transfer as |∆||λγ−λV |, which
makes them small within diffractive cone. Second, at high
energy the helicity is conserved at the parton level, so in
order to produce helicity flip the transverse motion of con-
stituent must come into play. This produces extra factors
like k2/M2, further suppressing helicity violation, espe-
cially for heavy quarks. Nevertheless, a small violation of
SCHC has been observed at HERA in the case of light vec-
tor mesons; at the amplitude level, its relative magnitude
was estimated to be ∼10% [22].

In the case of V3 production, the effect of SCHNC must
be more important, just as it was for D-wave vector meson
production [17]. The integration of the quadrupole term
kills the leading contribution to the SCHC amplitudes (12)
and (13), and the SCHC amplitudes get the same sup-
pression due to Fermi motion as SCHNC ones. Moreover,
partial cancellation among several terms discussed above
suppresses the T → T amplitude, while the helicity vio-
lating amplitudes do not suffer such cancellation. Finally,
one may pay attention to numerical factors like 1/

√
15

in the amplitude A+1;+1, which are absent, for example,
in the A+3;+1 amplitude and take into account the large
number of various helicity violating amplitudes for spin-3
meson production.

Thus, one can anticipate that the helicity violating am-
plitudes can generate a significant portion of the overall
cross section. One should not even be surprised to see them
dominate in the transverse cross section, especially at small
Q2. Therefore, the above twist analysis is meant only to
guide the eye and should not be used for a quantitative dis-
cussion.

4 Numerical study

In this section we present numerical results for the partic-
ular case of ρ3 production.

4.1 Input

In order to integrate (6) numerically, one needs to specify
models for the unintegrated gluon density and the meson
wave function. We related the skewed unintegrated gluon
density with non-zero momentum transfer to the forward
unintegrated gluon density by

F
(
x1, x2,κ +

1
2

∆,−κ +
1
2

∆

)

= F
(

0.41
Q2 +m2

V

W 2 ,κ

)
exp

(
− b3P∆2

2

)
, (20)

where b3P includes contributions from the two-gluon form-
factor of the proton and from the effective pomeron trajec-
tory, as described in detail in [1]. Although fixing the exact
numerical value of the shift coefficient (0.41) is beyond
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the log 1
x accuracy, its introduction is phenomenologically

motivated and, after all, it can be viewed as yet another
parameter in our parametrization. We did not try varying
this parameter to obtain a better fit. The parametriza-
tions for the forward unintegrated gluon density were bor-
rowed from [15]. Note that the kt-factorization approach
itself does not require Q2 to be large, and in the soft re-
gion,Q2 � 1 GeV2, the words “unintegrated gluon density”
should be understood simply as an appropriately normal-
ized Fourier transform of the dipole cross section.

As for the radial wave function, we choose the simple
Gaussian Ansatz WF normalized according to (4), with the
only free parameter, the “size” a of the wave function. In
contrast to the vector meson case, dileptonic decay ρ3 →
e+e− cannot proceed via one-photon annihilation and does
not help us fix a. However, appealing to the argument that
the radial wave functions of spin–orbital partners should
be similar, we can take a3 = aD, the latter being extracted
from Γ (ρ(1700) → e+e−).

4.2 Level of accuracy anticipated

Our experience with diffractive production of ground state
vector mesons within the same approach tells us that varia-
tion of the input parameters changes the absolute values of
the cross sections by a factor of � 1.5, while the accuracy for
the observables that depend on the ratios of the amplitudes
is even better [1, 16]. The principal source of uncertainty
was found to be the final meson wave function, especially its
density near the origin. The sensitivity of the results to the
particular parametrizations of the unintegrated gluon den-
sity presented in [16] (from both DGD2000 and DGD2002
sets of parametrizations) was found to be weak.

In the present case, the results are expected to be less
stable with variation of input due to the presence of various
cancellations. The main source of instability is the poorly
known value of the ρD dileptonic decay width. The data
available give Γ (ρD → e+e−) ∼ 0.1–0.6 keV (assuming
that ρ(1700) is indeed theD-wave qq̄ state). The possibility
that ρ(1700) has significant contributions from radially
excited qq̄ and from a possible hydrid state, as well as
taking into account extremely large NLO corrections [23]
for this decay, makes the situation even less definite.

All the curves to be presented below were calculated for
Γ (ρD → e+e−) = 0.14 keV. This value corresponds to the
value ofΓ (e+e−)·Br(π+π−) = 29+16

−12 eVobtained in [24]. In
order to see the effect of this input parameter, we calculated
cross sections both for ρ3 and ρD for the dileptonic decay
width in the interval 0.14–0.7 keV. Increasing Γ (ρD →
e+e−), we observed some suppression of the cross sections
at small Q2 and their significant growth at Q2 � 1 GeV2,
especially in the case of σT. The effect is strong, and we
conclude that the numerical results for the absolute values
of the cross sections are reliable only within factors of ∼2–3.

We stress, however, that variation of the input param-
eters produced absolutely the same shifts in the ρD pro-
duction cross sections. This should be expected, because
the relation between the two mesons is dictated primar-
ily by the similarity of their radial distributions and by

spin–angular relations of type of (19). These relations are
essentially insensitive to details of the model, as long as
we treat ρ(1700) as a predominantly qq̄ pair in the D-wave
state. We conclude therefore that the numerical values of
our predictions for ratios between ρ3 and ρD are more
stable, approximately within a factor of 1.5–2.

4.3 Q2 and t dependence

We calculated all the helicity amplitudes (7)–(10) for the
spin-3 meson and compared its production rate with that
of ρD and ρ1S . All the cross sections are calculated at
W = 75 GeV and are obtained from numerical integration
of the differential cross sections within the region 0 < |t| <
1.05 GeV2.

Figure 1 shows the ratios of the excited to ground
state meson cross sections σ(ρ3)/σ(ρ1S) and σ(ρD)/σ(ρ1S).
Both ratios are an order of magnitude smaller than unity,
and the ρD cross section is noticeably larger than that
of ρ3, especially at Q2 ∼ 1 GeV2. At larger Q2, the ra-
tio σ(ρD)/σ(ρ3) ∼ 2. Thus, if one intends to extract the
ρ(1700) properties from diffractively produced multipion
states around an invariant mass of ∼1700 MeV, one cannot
neglect contamination by the ρ3 state.

The difference between ρD and ρ3 is better seen if one
studies separately the longitudinal and transverse cross sec-
tions, shown in Fig. 2. Here, the solid and dash-dotted lines
represent the ρ3 and ρD cross sections, respectively. In the
case of ρ3 we showed also with the dashed lines the contri-
butions of the SCHC amplitudes only. One clearly sees the
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Fig. 1. Predictions for the
ratios of ρ3 (solid line) and
ρD (dashed line) to the ρ
production cross sections
as a function of Q2
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Fig. 2.Predictions for the longitudinal (left plot) and transverse
(right plot) cross sections of ρ3 (solid lines) and ρD (dash-
dotted lines) production. The contribution to ρ3 from the SCHC
amplitudes only is shown with dashed lines
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domination of helicity violating amplitudes at small Q2 in
ρ3 production. One can even state, on the basis of our cal-
culations, that ρ3 production at smallQ2 probes diffraction
in the regime of strong s-channel helicity violation. In the
case of the longitudinal cross section, the contribution of
SCHNC transitions becomes small at Q2 > 1 GeV2, since
all such amplitudes are of higher twist. Helicity violation
remains strong for transverse photons even at large Q2.

As mentioned above, in the case of D-wave vector
mesons one expects suppression of σL but not of σT. In-
deed, our calculations show the domination of the ρ3 over
ρD in σL at small Q2 � 1 GeV2, while in σT the ρD cross
section is noticeably larger than ρ3 everywhere. This is in
qualitative agreement with the twist analysis result (18).

Such a different behavior of ρD and ρ3 can be seen also
in the plots of the ratio σL/σT as a function of Q2, shown
in Fig. 3. Here, on the left plot, we showed this ratio for ρ3
and ρD, while on the right plot, we showed reduced ratios
RLT = σL

σT
· m2

i

Q2 , where mi is the mass of the corresponding
meson. RLT is small for ρD and relatively large for ρ3,
as was expected from the twist analysis (17). We note
that the region Q2 ∼ 1 GeV2 is particularly suitable for
distinguishing among various ρ states.

The role of helicity violating amplitudes can be seen
also in the |t|-distributions shown in Fig. 4 forQ2 = 1 GeV2

separately for longitudinal and transverse cross sections.
The dashed and dotted lines show the SCHC contribu-
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Fig. 3. Predictions for the ratios of the longitudinal to trans-
verse cross sections of ρ3 (solid line) and ρD (dashed line)
production. The left plot shows R = σL/σT, while the right
plot shows the reduced ratio RLT = σL/σT · m2
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Fig. 4. Differential cross sections dσL/d|t| (left plot) and
dσT/d|t| (right plot) for ρ3 at Q2 = 1 GeV2 as functions of
|t|. The dashed and dotted lines show contributions from helic-
ity conserving and helicity violating amplitudes, respectively;
the solid lines show their sum

tions only, while the solid lines show their sums. As can be
expected, the large contributions of SCHNC amplitudes
come from the entire t-interval shown, while the SCHC
amplitudes are strong only within a narrow forward cone.

4.4 Energy dependence

We checked also the energy dependence of the ρ3 produc-
tion cross section, which we parametrized with a simple
power law σ(ρ3) ∝ W δ. General expectations, driven by
the ground state production experience [1], are that at
small Q2 this exponent should be a small number, and one
speaks usually of a “soft pomeron”, while in the presence
of a hard scale it should grow up to δ ∼ 1, corresponding
to the “hard pomeron”.

For a particular example, we used HERA kinematics
and studied the energy behavior of the cross section within
the range W = 50–200 GeV. We found that at small to
moderate Q2, the ρ3 production cross section (both lon-
gitudinal and transverse) slightly decreases with energy
increase, with typically δ ∼ −0.1 to −0.2. It is only at
Q2 � 5 GeV2 that δ becomes positive, and it is always
smaller than the value of δ for the corresponding ground
state vector meson.

This decrease is naturally understood in the Regge pic-
ture of the pomeron exchange. The differential cross section
at non-zero t behaves roughly as

dσ
dt

∝ W δ(t);

δ(t) = 4[αP(t) − 1] ≈ 4[αP(0) − 1 − α′
eff · |t|].

The value of the effective pomeron intercept αP(0) depends
on Q2 and comes directly from the parametrizations of the
forward unintegrated gluon density [15]. At small Q2 it
is about αP(0) − 1 ∼ 0.08, and starts noticeably growing
only atQ2 � 2–3 GeV2. The effective slope of the pomeron
trajectory is α′

eff ≈ 0.12 GeV−2 with a very marginal Q2

dependence. (Note that it differs from the fixed input pa-
rameter α′

eff ≈ 0.25 GeV−2 used in our calculations due
to anti-shrinkage effects discussed in detail in [25].) Thus,
the effective exponent of the energy dependence of the
integrated cross section

δ ≈ 4[αP(0) − 1 − α′
eff · 〈|t|〉]

is governed not only by αP(0), but also by the typical
momentum transfers 〈|t|〉 involved.

In the production of ground state vector mesons the
dominant contribution comes from SCHC helicity ampli-
tudes, which are concentrated within the forward cone
|t| � 0.1 GeV2. In the present case, as Fig. 4 shows vividly,
the range of important values of |t| spans up to 0.5–1 GeV2.
One sees that due to such high values of |t| involved the en-
ergy increase exponent δ at smallQ2 can easily become neg-
ative.
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5 Discussion

5.1 What dipole sizes are probed
in ρ3 photoproduction?

The S-wave qq̄ state is naturally orthogonal to theD-wave
qq̄ state. For example, if one attempts to calculate the
inelastic ρS → ρD formfactor at zero momentum transfer,
one finds

M ∝
∫

dz
z(1 − z)

d2kψ∗
D(p2)ψS(p2)(2k2

z − k2)

=
∫

4
M

d3pψ∗
D(p2)ψS(p2)(2k2

z − k2) = 0.

Thepresence of the quadrupole combination 2k2
z−k2 makes

the amplitude zero, as long as all other factors under the
integral are spherically symmetric.

In the photoproduction, the wave function of the initial
photon is not spherically symmetric, but one can still appeal
to the vector dominance model arguments and rewrite the
ρ3 photoproduction amplitude as

〈γ|σ(r)|ρ3〉 ∝ gγρ · 〈ρ|σ(r)|ρ3〉. (21)

One can suspect that a similar orthogonality should be at
work here, when one considers a forward SCHC amplitude
at large qq̄ dipole sizes, where the dipole cross section
σ(r) → const so that all other factors seemingly become
spherically symmetric. If this were the case, it would mean
that the ρ3 photoproduction receives little contribution
from large dipoles and is a “harder” process than the ρ
photoproduction. However, this is not the case. The most
essential difference between the ρp → ρ3p amplitude and
(6) is the replacement of the photon wave function:

Φ2 → Ψ2

=
1

z(1 − z)
[
2ψS(k2

z + k2) − ψS(k2
z + (k + κ)2)

−ψS(k2
z + (k − κ)2)

]
, (22)

together with a similar replacement of Φ1. For clarity, we
explicitly presented the spherically symmetric quantity p2

as k2
z +k2. At small values of κ2, which correspond to large

dipole sizes, one obtains

Ψ2 ≈ −2κ2 [
ψ′

S(p2) + k2ψ′′
S(p2)

]
, (23)

where derivatives of the radial wave function are taken with
respect to p2.

The result (23) explicitly lacks spherical symmetry.
Thus, even if one uses the leading-twist contributions, pre-
tending that the ρ → ρ3 transition is well approximated
by non-relativistic expressions, one still gets

∫
d3p

[
ψ′

S(p2) + k2ψ′′
S(p2)

]
ψ3 · (2k2

z − k2) �= 0. (24)

This result is rather natural. The characteristic feature
of the high-energy collision is the presence of a preferred
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Fig. 5. The mapping functions WT(κ2) normalized to the
κ2 = 0 point for the ρ3 (solid lines) and ρ1S (dotted line)
photoproduction. The shaded area shows the distribution of the
results due to the decay width variation Γ (ρD → e+e−) = 0.14–
0.7 keV

direction: that of the proton’s momentum in the vector me-
son rest frame. The transverse and longitudinal dynamics
of the quark loop now differ, and this leads, in particu-
lar, to circulation of purely transverse momentum κ in the
loop, see (23), which breaks the spherical symmetry. Tak-
ing into account the Fermi motion makes the expression
to be integrated even less symmetric.

It is useful to check explicitly that large dipoles indeed
contribute substantially to the ρ3 production amplitude.
In order to test this numerically, we change the order of
integration in (6) and represent the forward T → T am-
plitude as

1
W 2 ImA+1;+1 =

∫
dκ2

κ2 F(x1, x2,κ, 0) ·WT(κ2). (25)

One expectsWT(κ2) to have the “smoothed step function”
shape: it should be approximately constant at small κ2 up
to some value QT

2
, and should decrease quickly as κ2

passes this value, see [26] for details of this analysis for the
ground state ρ production. This function “cuts out” the
important range of gluon momenta, and determines thus
the important range of the color dipole sizes. The effect of
orthogonality – if it were present – would appear inWT(κ2)
as a small-κ2 suppression.

In Fig. 5 we show WT(κ2) normalized to the κ2 = 0
point for the ρ3 and ρ1S photoproduction with solid and
dotted lines, respectively. The shaded area corresponds to
scattering of the results due to variation of the decay width
Γ (ρD → e+e−) = 0.14–0.7 keV. We observe no small-κ2

suppression for ρ3. The κ2 value where W (κ2)/W (0) hits
1/2 is κ2 ≈ 0.1–0.2 GeV2 for the ρ3, and is noticeably
smaller than the corresponding value of 0.27 GeV2 in the
ρ1S production. One sees that the ρ3 production is indeed a
softer process, and the typical dipole sizes probed are∼1.2÷
1.5 times larger than in the ground state VM production.

5.2 Comparison with experimental data available

The OMEGA Collaboration at CERN measured the cross
section of diffractive photoproduction of ρ3(1690) (known
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then as the g(1690) meson) via the a2(1320)π subsample
of the ηπ+π− diffractive final state events [11]. The cross
section of γp → ρ3(1690)p → a2(1230)πp was found to be
97 ± 28 ± 21 nb, which allows one to roughly estimate the
ρ3 production cross section as σ(γp → ρ3(1690)p) ∼ 200–
300 nb. This result is about 5–10 times below our photo-
production predictions, which we think is not a very bad
discrepancy, taking into account the expected level of ac-
curacy in the soft region. Indeed, most of this cross section
we predict to be due to SCHNC, especially the double-flip,
transitions. Its magnitude in the soft region was predicted
by our calculation to be rather large even for ground state
vector mesons, but so far has been poorly known from ex-
periment. We think that upon understanding better the
role of SCHNC at small Q2 with the aid of modern exper-
iments, we can improved the accuracy of our predictions.
We expect, however, that our conclusion of the strong viola-
tion of s-channel helicity violation probed in ρ3 will survive
such an upgrade. In addition, our cross sections correspond
to integration within 0 < |t| < 1.05 GeV2; the results will
change noticeably if one selects another t-interval.

The OMEGA Collaboration also measured the photo-
production cross section of ρ′. The original data were re-
analyzed in terms of ρ(1450) and ρ(1700) separately in [9]
yielding σ(ρ(1700)) ∼ 500 nb. Thus, our result σ(ρ(1700))
/σ(ρ3) ∼ 3 at the photoproduction limit is roughly consis-
tent with experiment. Finally, comparing the ρ3 and the
ground state ρ photoproduction cross sections, we note
that our result σ3/σ1S ∼ 0.1 is again not very far from the
experimental value of 0.02–0.03.

5.3 Comments on experimental possibilities

The experimental analysis of diffractive production of spin-
3 resonances, and in particular, the strategy of ρ3(1690)
/ρ(1700) separation, will depend on the statistics available
and the final state chosen.

Should one have the luxury of high statistics, one can
do the partial wave analysis or select some particular final
states, in which one of the two states would dominate. An
example of this approach is just the OMEGA Collaboration
observation of the ρ3 in the a2(1320)π → ηπ+π− final
state. If the statistics does not allow for such an angular
dependence or final state analysis, one then should look for
distinctions in the production of these mesons. In the view
of our results, it is tempting to make use of ratios σL/σT,
which are dramatically different for ρ3 and ρD, especially
in the small to moderate Q2 region.

One possibility to separate σL and σT is given by the
Rosenbluth method. It will require several runs at dif-
ferent lepton beam energies and might seem impractical
at high energies. The second possibility could be to do a
baby-version of PWA and to study angular correlations in
final state hadrons. For example, if both mesons discussed
are observed in π+π− (the corresponding branching ratios
are not dominant, but still sizable), one could study the
single-differential angular distributionW (cos θ). This mea-
surement will give spin density matrix element r0400, from
which one recovers σL/σT. Alternatively, one can search

for a similarly revealing angular dependence in 4π final
states, the dominant decay channel of both mesons.

Another issue, which requires taking into account the ρ3
meson, is the recent observation of a narrow dip structure
in diffractively photoproduced 3π+3π− states at M6π ≈
1.9 GeV in the Fermilab E687 experiment [27]. Although
the detailed mechanism of its appearance remains unset-
tled, the very recent analysis [28] sees it as a result of the
interplay of several resonances with JPC = 1−− (including
ρ(1700)) and a background. This analysis was explicitly
based on the vector dominance idea and explicitly uses
the assumption that the 6π spectra in e+e− annihilation
and in diffractive photoproduction are essentially the same
(apart fromkinematical factors).The results presentedhere
clearly show that this is a risky assumption. The ρ3 meson
does not couple to the single virtual photon, yet it should
be produced diffractively at a rate comparable to that of
ρ(1700). Although it cannot produce any interference pat-
tern with J = 1 states, its own contribution can affect the
results of the very delicate analysis of [28].

6 Conclusions

We calculated the cross section of the exclusive production
of JPC = 3−− mesons in diffractive DIS within the kt-
factorization approach. The results were compared with
the cross section of the D-wave state vector meson of the
same quarkonium. We exemplified the general expressions
with a detailed numerical study of the ρ system, where
the ρ3(1690) state is almost degenerate with the ρ(1700)
meson, whose structure is arguably dominated by the qq̄
pair in the D-wave.

The absolute values of the cross sections suffer from
uncertainties of the input parameters, in particular, of the
ρD → e+e− decay width, and we can be sure only of
the order of magnitude of these results. However, in what
concerns the relative production rates of ρ3 and ρD, our
conclusions are much more certain. Our results allow us
to formulate the following predictions, which are stable
against variations of the model parameters.
(1) In typical HERA kinematics, the ratio of production
cross sections taken at equal Q2 is σ(ρD)/σ(ρ3) ≈ 3–5
at small Q2, decreasing to ≈ 2 at larger Q2. Thus, when
extracting the properties of ρ(1700) from multipion final
states, one cannot simply neglect the ρ3 contribution.
(2) ρ3 and ρD show completely different patterns in σL–σT
decomposition: ρ3 dominates in the longitudinal cross sec-
tion, while ρD dominates in the transverse cross section.
The ratios R = σL/σT for ρ3 and ρD differ by more than
one order of magnitude. This dramatic difference can be
traced back to the spin–angular properties of these two
mesons, see (19).
(3) The role of the s-channel helicity violating amplitudes is
extremely important, especially in the transverse cross sec-
tion. At small to moderate Q2 the helicity violating ampli-
tudes even dominate over the SCHC ones. Thus, production
of ρ3 offers an interesting possibility to study diffraction
in the regime of strong s-channel helicity violation.
(4) Due to the large color dipole sizes probed in the ρ3
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production and the large region of relevant momentum
transfers, |t| � 1 GeV2, the energy dependence of the ρ3
production cross section is less steep than in the case of ρ.
At small Q2, one might even observe a decrease of the ρ3
cross section with energy increase.

We find no surprise in the numerical stability of the first
two conclusions, since they are essentially driven by very
basic relations: similarity of the radial wave functions for
ρ3 and ρD, the spin–angular composition of these mesons,
see (19), and the quadrupole suppression of the leading
contributions in the SCHC amplitudes (12) and (13).

In addition, confronting our predictions for photopro-
duction with the fixed target data available and observing
them to agree within the anticipated accuracy inspires hope
that we grasp the essential physics of this reaction in our
approach. We are looking forward to seeing experimental
checks of our predictions.
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